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Abstract

Large language models (LLMs) have shown im-
pressive performance by generating reasoning
paths before final answers, but learning such a
reasoning path requires costly human supervi-
sion. To address this issue, recent studies have
explored self-training methods that improve
reasoning capabilities using pseudo-labels gen-
erated by the LLMs themselves. Among these,
confidence-based self-training fine-tunes LLMs
to prefer reasoning paths with high-confidence
answers, where confidence is estimated via
majority voting. However, such methods ex-
clusively focus on the quality of the final an-
swer and may ignore the quality of the rea-
soning paths, as even an incorrect reasoning
path leads to a correct answer by chance. In-
stead, we advocate the use of reasoning-level
confidence to identify high-quality reasoning
paths for self-training, supported by our empir-
ical observations. We then propose a new self-
training method, CORE-PQO, that fine-tunes
LLMs to prefer high-COnfidence REasoning
paths through Policy Optimization. Our ex-
periments show that CORE-PO improves the
accuracy of outputs on four in-distribution and
two out-of-distribution benchmarks, compared
to existing self-training methods.

1 Introduction

Large language models (LLMs) have shown im-
pressive performance across various tasks by gen-
erating reasoning paths before yielding the final an-
swer (Wei et al., 2022; Kojima et al., 2022; Zhang
et al., 2023). However, the potential for improv-
ing reasoning through supervision is limited by the
scarcity of high-quality data with human-annotated
or ground-truth labels. To address this issue, re-
cent studies have proposed self-training methods
for LLMs, which leverage pseudo-labels generated
by the LLMs themselves and require only the in-
put questions (Huang et al., 2023; Kumar et al.,
2024; Prasad et al., 2024; Zhang et al., 2024c,b;

Ranaldi and Freitas, 2024; Zuo et al., 2025).1 Ata
high level, these methods fine-tune the base LLMs
to prefer high-quality outputs identified through
self-assessment strategies in inference-time scal-
ing techniques, e.g., self-consistency (Wang et al.,
2023), tree-of-thoughts (Yao et al., 2023), and self-
refinement (Madaan et al., 2023a).

As a representative approach, confidence-based
methods have improved the reasoning capabilities
by training LLMs to prefer reasoning paths associ-
ated with high-confidence answers (Huang et al.,
2023; Prasad et al., 2024; Zhang et al., 2024b; Zuo
et al., 2025). These methods are motivated by the
observation that the answers with high confidence
scores tend to yield high accuracy (Wang et al.,
2023; Taubenfeld et al., 2025), and thus assume
that reasoning paths leading to such answers are
reliable. Specifically, Huang et al. (2023); Prasad
et al. (2024) and Zhang et al. (2024b) estimate the
confidence in answers using self-consistency scores
measured via majority voting, and then fine-tune
LLMs to prefer reasoning paths associated with
high-confidence answers.

In this work, we argue that existing confidence-
based self-training methods exclusively focus on
answer-level confidence and may ignore the quality
of the reasoning path. In practice, as illustrated
in Figure 1 and observed in Observation 1, LLMs
often generate incorrect reasoning paths that lead
to high-confidence answers, even when those an-
swers are correct (Lanham et al., 2023; Zhang et al.,
2024a). Consequently, LLMs may learn to pre-
fer incorrect reasoning paths associated with high-
confidence answers, which degrade their reasoning
capabilities. This pitfall highlights the necessity
of incorporating reasoning-aware confidence mea-
sures into the self-training of LLMs to better iden-
tify high-quality reasoning paths.

'We refer to self-training as a scheme that requires only
the input questions, without labels or external models.
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Figure 1: Limitations in existing confidence-based self-training methods. Existing self-training methods prefer
reasoning paths associated with a high-confidence answer (a), estimated via majority voting. However, they fail to
capture the errors in their third reasoning path, even though the answer is correct. As a result, they can degrade
the reasoning capabilities of the LLM, e.g., preferring “(b)-(d) are boiling points” can lead to “32 °C is the boiling
point”, as shown in below. In contrast, our method measures reasoning-level confidence (as depicted by the dashed
line) and fine-tunes LLMs to prefer high-confidence reasoning paths that yield correct statements.

To this end, we propose incorporating reasoning-
level confidence into a confidence-based self-
training method. As illustrated in Figure 1, our
method evaluates the correctness of reasoning by
estimating confidence in the reasoning paths rather
than relying solely on answer-level confidence.
This is motivated by Observation 2, which shows
that outputs with higher reasoning-level confidence
exhibit fewer errors, aligned with prior findings
that such confidence is useful for identifying high-
quality outputs (Becker and Soatto, 2024; Wan
et al., 2025; Taubenfeld et al., 2025).

We then propose CORE-PO, a method that fine-
tunes LLMs to prefer high-COnfidence REasoning
paths using Policy Optimization. To be specific,
we estimate the reasoning-level confidence using
P(True) (Kadavath et al., 2022), measuring the
probability that LLM returns “true” to the prompt
asking whether the reasoning is correct. We con-
sider the two ways to measure P(True) of reasoning:
a monolithic way that assesses the entire reasoning
path, and a statement-wise way that computes the
average confidence across each step in the reason-
ing path. Then, we combine reasoning-level confi-
dence with answer-level confidence, and fine-tune
LLMs using direct preference optimization (Guo
et al., 2024) to prefer high-confidence outputs.

In our experiments, we apply our self-training
method to four arithmetic or scientific reasoning
benchmarks: GSM8K (Cobbe et al., 2021), ARC-
Challenge (Clark et al., 2018), GPQA (Rein et al.,
2023), and MATH (Hendrycks et al., 2021). We

also consider two external benchmarks, CRUXE-
val (Gu et al., 2024) and Game-of-24 (Lile, 2025),
to evaluate the generalization capabilities on out-
of-distribution tasks. Our method improves the
accuracy of outputs on both in-distribution and out-
of-distribution tasks by enhancing reasoning qual-
ity, compared to existing self-training approaches.

To conclude, our contributions can be summa-
rized as follows:

* We identify a limitation of existing confidence-
based self-training methods: they rely solely on
answer-level confidence, which may fail to cap-
ture the errors in reasoning.

* We propose a new self-training method that in-
corporates reasoning-level confidence to better
identify reasoning paths with fewer errors.

* Through extensive evaluation, we show that
our method improves answer accuracy and re-
duces errors in reasoning compared to existing
approaches on both in-distribution and out-of-
distribution reasoning benchmarks.

2 Background: Self-Training LLMs

In this section, we describe the preliminaries of
existing self-training methods for large language
models (LLMs). We describe additional related
works in Appendix A.

Notation. Let x denote a question provided to
an LLM Mj. For a given question z, we assume
that the LLM outputs a sequence s = [r, a], where
r represents the reasoning path and « is the final
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Figure 3: Overview of CORE-PO. The LLM My generates multiple outputs, each consisting of a reasoning and an
answer s = [r, a] for a given question. Next, we measure the reasoning-level confidence Cy(r|x) = P(True) for
each reasoning path. Then, we fine-tune the LLM to prefer high-confidence reasoning paths.

answer induced from this reasoning path. In this
paper, we are particularly interested in the model’s
confidence in its generated sequences. We denote
the model’s confidence score (or uncertainty esti-
mate) on a given statement by Cy(-), which can
be computed through various existing approaches
such as self-consistency (Wang et al., 2023), se-
mantic entropy (Kuhn et al.), or other uncertainty
quantification techniques.

2.1 Ecxisting works on self-training

Recent studies have shown that LLMs can self-
improve through fine-tuning with pseudo-labels,
e.g., the preference, generated by themselves. The
key idea of these approaches is to transfer the
performance gains from inference-time scaling
methods such as self-consistency (Wang et al.,
2023), tree-of-thoughts (Yao et al., 2023), or self-
refinement (Madaan et al., 2023b), into training-
time improvements through fine-tuning. These
inference-time methods typically generate multi-
ple candidate outputs and select high-quality out-
puts based on self-assessments, e.g., confidence
estimation (Wang et al., 2023). Extending this ap-
proach, self-training methods fine-tune the LLMs
to prefer outputs assessed as high-quality by the
models themselves, leading to improved perfor-
mance across various tasks (Huang et al., 2023;
Yuan et al., 2024; Prasad et al., 2024; Zhang et al.,
2024b; Zuo et al., 2025). Among these, several
methods (Huang et al., 2023; Prasad et al., 2024;
Zuo et al., 2025) leverage confidence scores, pro-
viding evidence that confidence-guided supervision
can serve as a powerful training signal.

2.2 Existing works on confidence-based
self-training

Recent self-training methods for LLMs aim to im-
prove the reasoning capabilities by rewarding a
reasoning path r that leads to an answer a with a
high confidence score Cy(a|z) (Huang et al., 2023;

Prasad et al., 2024; Zhang et al., 2024b). These
methods build on the observation that such an an-
swer yields higher accuracy (Wang et al., 2023),
and thus assume that the reasoning path r leading
to such an answer is reliable. Specifically, they es-
timate the confidence score for an answer a using
majority voting over multiple generated answers
a',...,a", ie., Cy(alr) = %Zﬁ\;ﬂl[@ = a'],
following the concept of self-consistency (Wang
et al., 2023). Next, they fine-tune the LLMs using
reinforcement learning to prefer reasoning paths
with high answer-level confidence Cy(a | z).

3 Method

We introduce our confidence-based self-training
method for large language models (LLMs) to im-
prove their reasoning capabilities. First, we show
(1) how existing confidence-based self-training
methods can prefer incorrect reasoning paths, and
(2) how incorporating reasoning-level confidence
mitigates this issue (Section 3.1). Next, we de-
scribe a method that fine-tunes LLMs to prefer
high-COnfidence REasoning paths using Policy
Optimization, coined CORE-PO (Section 3.2).

3.1 Motivation for reasoning-level confidence
in self-training

Our motivation stems from the limitations of con-
fidence measures used for existing self-training
methods (Huang et al., 2023; Prasad et al., 2024;
Zhang et al., 2024b), which evaluate a reason-
ing—answer pair [r,a] based on the confidence
score on the answer Cy(a|z). Here, we argue that
such answer-level confidence may fail to capture
the overall quality of the reasoning path (Figure 1
and Observation 1), as even an incorrect reason-
ing path may lead to a correct answer (Lanham
et al., 2023; Zhang et al., 2024a). To remedy this,
we advocate the use of reasoning-level confidence
Cy(r|x) as a way to evaluate the quality of reason-
ing paths (Observation 2).
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Figure 2: Answer vs. reasoning accuracies. We use
Llama3.1-8B-Instruct (Meta Al, 2024). Reasoning-level
accuracy coincides more closely with reasoning-level
confidence than with answer-level confidence.

To support our claim, we conduct an observa-
tional experiment using multiple-choice questions
in the GPQA dataset (Rein et al., 2023). We gener-
ate reasoning paths and assign two types of confi-
dence scores to each path: one based on confidence
in the final answer Cy(a|z) (estimated via majority
voting), and the other incorporating confidence in
the reasoning path Cy(7|x).2 We describe detailed
experimental settings in Appendix B.1. Then, we
evaluate the correctness of the final answers and
reasoning paths with accuracy.’

Our experiment makes the following observa-
tions, which support the use of reasoning-level con-
fidence to evaluate the reasoning path.

Observation 1. Reasoning paths with high
answer-level confidence are often incorrect, even
when the final answers are correct. See the gap
between the answer-level accuracy (dashed red)
and reasoning-level accuracy (solid red) for out-
puts with high answer-level confidence in Figure 2.

Observation 2. High reasoning-level confidence
Cy(r|z) tends to yield accurate reasoning with
fewer errors, coinciding with high answer-level
accuracy. See the accuracy of outputs with high
reasoning-level confidence (blue) in Figure 2.

The findings in Observation 1 hint at the pitfall
of existing confidence-based self-training methods,
that can train LLMs to prefer incorrect reasoning
paths associated with high answer-level confidence
by chance. Note that this pitfall also exists in con-
ventional (not self-training) fine-tuning methods
that use ground-truth answers and define the reward
based on answer-level accuracy (Zelikman et al.,
2022; Trung et al., 2024; DeepSeek-Al, 2025), as
they may assign a positive reward to the incorrect
reasoning path that leads to correct answer.*

*We actually consider Cy(r, alz) = Co(r|z)Co(alz,r)
for the later, using the measures described in Section 3.2.

3We use 04-mini-2025-04-16 (OpenAl, 2025) to evalu-

ate correctness of generated reasoning paths.
4See the ablation study in Section 4.3 for details.

Algorithm 1 Self-training LLMs with reasoning-
level confidence scores

1: Input: An LLM Mpy, a set of questions X’
: Initialize the reference model M.t using My
repeat

Sample a question z ~ X

Sample {(r', a')}X | ~ Mp(- | 2)

Compute {Cy(r,a’ | 2)}Y,

Update 6 to minimize £ in Equation (1)
until convergence

® DR RN

In response, we propose incorporating reasoning-
level confidence Cy(r | ) to identify high-quality
reasoning paths for self-training. While confidence
scores have primarily been used for the factuality of
a single statement, we highlight their utility in eval-
uating reasoning correctness, supported by Obser-
vation 2. Note that this observation also aligns with
the finding in recent inference-time scaling meth-
ods (Becker and Soatto, 2024; Taubenfeld et al.,
2025), which improve performance by selecting
high-confidence reasoning paths.

3.2 CORE-PO: Self-training LL.Ms with
reasoning-level confidence

We describe our self-training method, which learns
to prefer high-confidence reasoning paths using
policy optimization (CORE-PO). This method in-
volves measuring reasoning-level confidence and
training LLMs to prefer high-confidence reasoning
paths. We provide an overview of our method in
Figure 3 and Algorithm 1.

To measure the reasoning-level confidence
Cy(r|x), we use P(True) (Kadavath et al., 2022)
which measures the probability that LLM returns
“true” to the prompt asking whether the given rea-
soning 7 is correct for the given question z.°> In
detail, we consider two ways to measure confi-
dence in a multi-statement reasoning path. First,
for the monolithic P(True), we measure confidence
in one-shot through asking the LLM to check the
truthfulness of all the statements at once. Next, for
the statement-wise P(True), we query the LLM for
each statement to check the truthfulness, then av-
erage over the confidence scores, i.e., we measure
* Zle Co(r¢|x,r1,. .., m—1) for multiple state-
ments in the reasoning path r = [r,...,r7].°* We

>Note that P(True) has already shown promising results to
evaluate the reasoning paths in existing inference-time scaling
methods (Becker and Soatto, 2024; Taubenfeld et al., 2025)
®We compare both measures in Section 4.3.



Fine-tuning Decoding GSM8K ARC-Challenge GPQA®™' MATH">
Greedy 84.2 84.5 324 22.6
. Linguistic 85.7 86.0 31.8 22.1
Not Applied Ne 89.6 86.6 34.3 25.6
P(True|r, a) 89.7 87.0 34.5 25.2
Learning from linguistic self-assessment of answer quality
Greedy 85.2 86.2 34.3 19.8
SR-PO (Kumaretal, 2024) ;o ictic 867 87.4 35.5 212
Learning to prefer reasoning paths with high answer-level confidence Cy(a|z)
Greedy 85.7 86.0 33.7 25.1
SC-PO (Prasad et al., 2024) SC 29.7 %75 345 29.4
Learning to prefer reasoning with high confidence scores Cy(r|z) (ours)
Greedy 86.8 87.5 35.5 24.6
CORE-PO (ours) P(True|r,a)  90.5 89.2 36.1 29.8

Table 1: Performance of self-training methods on Llama3.1-8B-Instruct. Bold indicates the best performance
under greedy decoding or inference-time scaling methods (with sampling of eight outputs). Our method outper-
forms the considered baselines when applying both greedy decoding and inference-time scaling method.

also incorporate the answer-level confidence score
Cy(a|z,r), measured by P(True) given the ques-
tion x and the reasoning path r. The implementa-
tions and prompts are described in Appendix B.2.

Next, we optimize the LLM My to prefer rea-
soning—answer pairs with high confidence scores,
measured as Cy(a, r|x) = Cy(alz,r)Cy(r|z). To
this end, we use online Direct Preference Optimiza-
tion (Guo et al., 2024, DPO), which samples two
or more outputs for a given question and optimizes
the LLM to assign higher likelihood to the output
with higher confidence scores:

My (s'|2) My (s"|x) )

L=1logo | Blog =121 g1oe 22005 1T
° ( * M) " Mraa(5¥[a)

(1

where s = [y*,r"] denotes a sequence with a

higher confidence score than another sequence s',

o denotes the logistic function, and 3 is a hyper-
parameter in the DPO. The base reference model
M, initializes My. We fix the reference model
during training without updates.

4 Experiments

In this section, we conduct experiments to validate
CORE-PO across various reasoning tasks.

4.1 Experimental setup

In experiments, we consider two LLMs, Llama3.1-
8B-Instruct (Meta AI, 2024) and Qwen2.5-7B-
Instruct (Qwen Team, 2024), as base LLMs to im-
plement our self-training method and baselines.

Tasks and datasets. We evaluate our self-training
method on a range of reasoning tasks using the
following datasets:

* GSMS8K (Cobbe et al., 2021) consists of basic
math questions requiring multi-step arithmetic
reasoning. We use questions in training split for
self-training and evaluate on the test split by the
accuracy of the generated numerical answers.

* ARC-Challenge (Clark et al., 2018) contains
multiple-choice science questions requiring com-
monsense reasoning. We use questions in the
training split for self-training and evaluate on the
test split by the accuracy of the selected choices.

* GPQA (Rein et al., 2023) contains graduate-
level multiple-choice questions requiring ad-
vanced scientific reasoning. We use questions
in GPQA-main and GPQA-extended splits for
training and evaluation, respectively.

* MATH (Hendrycks et al., 2021) is a mathematic
reasoning benchmark, which consists of chal-
lenging high-school math problems. We use
questions in the training split for self-training and
evaluate on Level-5 questions in the test split.

In addition, we evaluate the out-of-domain general-
ization capabilities of self-trained LLMs using the
following two benchmarks:

¢ CRUX (Gu et al., 2024) is a benchmark for eval-
uating code understanding and execution. We
use tasks of predicting the output of Python func-
tions given inputs, i.e., CRUX",



Fine-tuning Decoding GSM8K ARC-Challenge QPQA®* MATH"?
Greedy 90.0 89.1 30.6 45.4
. Linguistic 91.1 89.9 314 47.9
Not Applied Ne 92.0 91.5 33.7 54.6
P(True|r, a) 93.2 91.3 34.1 55.0
Learning from linguistic self-assessment of answer quality
Greedy 90.9 90.2 32.6 48.1
SR-PO (Kumaretal, 2024) ;o ictic 926 91.3 35.8 493
Learning to prefer reasoning with high answer-level confidence Cy(a|x)
Greedy 91.0 91.0 34.3 49.6
SC-PO (Prasad et al., 2024) SC 93.0 9.0 36.3 557
Learning to prefer reasoning with high reasoning-level confidence Cy(r|z) (ours)
Greedy 91.3 92.2 37.5 49.6
CORE-FO (ours) P(True|r,a)  93.5 92.8 38.5 55.8

Table 2: Performance of self-training methods on Qwen2.5-7B-Instruct. Bold indicates the best performance
under greedy decoding or inference-time scaling methods (with sampling of eight outputs). Our method outper-
forms the considered baselines when applying both greedy decoding and inference-time scaling method.

* Game of 24 (Lile, 2025) is a reasoning bench-
mark, where the goal is to determine whether a
given set of four integers can be combined using
operations (addition, subtraction, multiplication,
or division) to induce the number 24.

We provide detailed data statistics of the above
datasets in Appendix B.3.

Baselines. We compare our CORE-PO with ex-
isting self-training approaches. We first consider
self-rewarding-based preference optimization (Ku-
mar et al., 2024, SR-PO), which trains LLMs us-
ing linguistic self-assessments of answer quality,
e.g., assigning higher scores to outputs involv-
ing expert-level knowledge. Next, we consider
self-consistency preference optimization (Zhang
et al., 2024b, SC-PO), which trains LLMs to
prefer outputs with high answer-level confidence
scores Cp(alr) measured via self-consistency
score (Wang et al., 2023, SC), i.e., majority voting
over multiple sampled outputs.

To compare the performance, we generate out-
puts from each fine-tuned and base LLM using two
decoding schemes: (1) greedy decoding and (2)
inference-time scaling methods. For (2), we gener-
ate multiple outputs and select the most promis-
ing one from the self-assessment score associ-
ated with each self-training method: the linguis-
tic self-assessment score (Linguistic) for SR-PO,
the majority-voting score over multiple answers
(SC) for SC-PO, and the estimated confidence score
on the reasoning-answer pair (P(True|r, a)) for our
self-training method.

Implementations. In our experiments, we apply
self-training methods to LLMs using unified train-
ing question sets from the aforementioned datasets.
Here, we implement our self-training method using
monolithic P(True) to measure confidence scores
on reasoning paths.” We then evaluate the self-
trained LLMs on test question sets from both in-
distribution and out-of-distribution datasets. For
training, we generate N = 5 outputs for each ques-
tion with 7" = 1.0 temperature and top-p = 0.9
(Holtzman et al., 2020). We also apply a low
rank adaptation (Hu et al., 2022) with rank 128
and a = 256 to both Llama3.1-8B-Instruct and
Qwen2.5-7B-Instruct. We also use 5 = 0.1 in
direct preference optimization. To apply inference-
time scaling methods, we randomly sample eight
outputs with 7" = 0.7 and top-p = 0.9. We fur-
ther describe detailed experimental settings and
prompts in Appendix B.

4.2 Main results

Competitive performance for self-training. We
present the results in Tables 1 and 2, which are ob-
tained from our implementations using Llama3.1-
8B-Instruct and Qwen2.5-7B-Instruct, respectively.
One can observe that our self-trained LLMs out-
perform the base LLMs and the LLMs self-trained
with SR-PO and SC-PO algorithms. In particular,
one can observe that self-training with reasoning-
level confidence (CORE-PO) yields larger gains

"We present the results of self-training with statement-wise
P(True) in Section 4.3.



GSMSK

ARC-Challenge

Fine-tuning Decoding Conf. Score Reason Acc. Conf. Score Reason Acc.
. Greedy 0.89 84.2 0.84 79.2
Not Applied  ppriclra) 0.98 89.7 0.94 81.2
Greedy 0.94 86.8 0.95 81.5
CORE-PO (0urs) b pruelra) 0.99 90.4 0.99 84.9

Table 3: Reasoning-level confidence and accuracy. The base LLM is Llama3.1-8B-Instruct. Bold indicates the
best performance under greedy decoding or inference-time scaling methods (with sampling of eight outputs). Our
self-training method enables the LLM to improve reasoning-level confidence and accuracy.

Fine-tuning Decoding CRUX* Game of 24
Greedy 34.8 7.2
. Linguistic 34.7 13.2
Not Applied g 46.1 153
P(True|r,a) 41.0 21.0
Greedy 31.6 8.8
SRPO  mrra—rr 10.5
Greedy 43.8 8.3
SCPO SC 50.0 11.9
Greedy 471 18.8
CORE-PO P(True|r,a)  48.0 22.1

Table 4: Performance of self-training methods on
out-of-distribution tasks. The base LLM is Llama3.1-
8B-Instruct. Bold indicates the best performance under
greedy decoding or inference-time scaling methods
(with sampling of eight outputs). Our self-training
method shows competitive performance or yields best
results compared to considered baselines.

over self-training with answer-level confidence
(SC-PO) on the ARC-Challenge and GPQA bench-
marks, whose multiple-choice format often al-
lows incorrect reasoning paths to lead to high-
confidence answers by chance. Furthermore, on
these benchmarks, one can see that our fine-tuned
LLMs achieve higher accuracy with greedy de-
coding than the base LLMs using inference-time
scaling. These overall results highlight that our
self-training method enables the LLMs to generate
higher-quality answers.

Improved reasoning-level accuracy and confi-
dence in reasoning. In addition, we also mea-
sure the confidence score on the generated reason-
ing paths and the reasoning-level accuracy.® We
present the results in Table 3. Here, one can ob-

8We evaluate the reasoning-level accuracy using external
oracle 04-mini-2025-04-16 (OpenAl, 2025) by querying
whether the reasoning is correct.

serve that our fine-tuned model increases reasoning-
level confidence compared to the base LLM, which
coincides with an increase in reasoning-level accu-
racy. These results also provide evidence that our
self-training method enhances the reasoning capa-
bilities of the base LLM by preferring reasoning
paths with higher confidence.

Generalization to out-of-distribution tasks. We
also conduct validation on out-of-distribution tasks.
We present the results in Table 4. One can observe
that our method yields significant improvements
on both CRUX®" and Game of 24, compared to
the base LLM. In particular, one can see that our
self-training method yields the best performance on
Game of 24 when applying both greedy decoding
and inference-time scaling. While SC-PO shows
competitive performance on CRUX®", it shows
limited improvement on Game of 24. These results
highlight that our method generalizes better to out-
of-distribution tasks than existing baselines.

4.3 Ablation studies

Monolithic P(True) vs. statement-wise P(True).
We also conduct experiments by implementing our
method using statement-wise P(True). We present
the results in Table 5. Here, one can see that neither
method consistently outperforms the other: self-
training with statement-wise P(True) yields high
performance on the GSM8k, ARC-Challenge, and
MATH!"> benchmarks, but yields relatively low
performance on the GPQA®X' benchmark. Never-
theless, both methods consistently outperform the
base LLM. These results highlight that the perfor-
mance improvements of our method do not stem
from a particular implementation of confidence esti-
mation, but from the philosophy of preferring high
reasoning-level confidence.

Fine-tuning with ground-truth answers. We also
conduct experiments by incorporating reasoning-



Fine-tuning GSMSK ARC-Challenge GPQA®' MATHMY
Not Applied 84.2 84.5 32.4 22.6
CORE-PO w/ Monolithic P(True) 86.8 87.5 35.5 24.7
CORE-PO w/ Statement-wise P(True) 88.5 88.0 34.1 25.3

Table 5: Self-training with two different confidence measures. The base LLM is Llama3.1-8B-Instruct. We use
greedy decoding for the comparison. Both monolithic P(True) and statement-wise P(True) consistently improve the
base model, but neither variant shows a clear advantage over the other.

Reward signal Decoding Answer Acc. Reason Acc.
Learning to prefer reasoning paths leading to correct answers
Greedy 87.4 73.6
Answer Acc. P(Truelr,a) 88.1 78.1
Learning to prefer high-confidence reasoning paths leading to correct answers (ours)
Greedy 88.3 81.9
Answer Acc. + Reason Conf. (ours) P(Truelr,a) 90.1 85.6

Table 6: Experiments with ground-truth answers. The base LLM is Llama3.1-8B-Instruct. Bold indicates the
best performance under greedy decoding or inference-time scaling methods (with sampling of eight outputs). We
use the training and test splits of the ARC-Challenge dataset (Clark et al., 2018). Incorporating reasoning-level
confidence Cy(r|x) leads to improvements in both answer-level and reasoning-level accuracy.

level confidence into a conventional fine-tuning
(not self-training) method, which uses ground-truth
answers and defines answer-level accuracy as the
reward (Zelikman et al., 2022; Trung et al., 2024;
DeepSeek-Al, 2025). This experiment is motivated
by the following pitfall in this method: rewarding
incorrect reasoning paths that yield correct answers
by chance. Motivated by this issue, we hypothesize
that incorporating reasoning-level confidence can
prevent the LLM from preferring incorrect reason-
ing paths that lead to correct answers. Specifically,
we compare two fine-tuning methods: one that
assigns rewards based solely on answer-level ac-
curacy, and another that incorporates both answer-
level accuracy and reasoning-level confidence.

In Table 6, we present the results of experiments
conducted on the multiple-choice questions from
the ARC-Challenge dataset. One can see that incor-
porating reasoning-level confidence improves both
answer-level and reasoning-level accuracies. No-
tably, the LLM fine-tuned solely on answer-level
accuracy shows significantly lower reasoning-level
accuracy compared to its answer-level accuracy.
We observe that this degradation stems from the
model’s reasoning patterns, which tend to generate
unnecessarily long reasoning paths by evaluating
all options in the multiple-choice question. Here,
the LLM often makes mistakes in evaluating some
of the choices, even when the final answer is cor-
rect. Table 7 presents examples of these patterns.

Question

At which temperature does water freeze?
[1] 0°C, [1I] 32°C, [1II] 100°C, [IV] 212°C

Fine-tuning with Answer Acc.

[1] is correct: water freezes at 0°C. [II] is incorrect: 32 is
boiling point in Fahrenheit. [III] is incorrect: 100°C is the
boiling point of water. [IV] is incorrect: 212 is the boiling
point in Fahrenheit. Answer: [I]

Fine-tuning with Answer Acc. + Reason Conf. (ours)

The question asks for the freezing point of water. In the
Celsius scale, this is 0°C, a well-known scientific fact across
disciplines such as chemistry and physics. Answer: [I]

Table 7: Example of generated reasoning paths. The
reasoning content is summarized due to its excessive
length. The first reasoning path involves errors despite
leading to the correct answer.

5 Conclusion

In this paper, we propose a new confidence-based
self-training method that addresses a key limitation
of existing approaches: the exclusive reliance on
answer-level confidence, which does not capture
the overall quality of the reasoning. By incorpo-
rating reasoning-level confidence, our method fine-
tunes LL.Ms to prefer high-confidence reasoning
paths with fewer errors, thereby improving their
reasoning capabilities. Empirical results on six
benchmarks show that our method improves the rea-
soning capabilities of LLLMs on both in-distribution
and out-of-distribution tasks, outperforming exist-
ing self-training methods.



Limitations

Confidence measures. Although we use a confi-
dence measure that is relatively reliable than pure
likelihoods over generated sequences, it can suffer
from overconfidence due to the inherent calibration
issues of large language models. This still poses
the risk of reinforcing incorrect reasoning paths
that are assigned high confidence scores due to
miscalibrated confidence estimates. Next, our eval-
uation considers confidence metrics based solely
on P(True), but incorporating alternative measures,
e.g., semantic entropy (Kuhn et al.) or contextu-
alized likelihood (Lin et al., 2024), may provide
a more robust estimation of the confidence. An
interesting avenue for future work is to develop
and incorporate more robust and well-calibrated
confidence measures into our method.
Language-specific experiments. Our experiment
focuses exclusively on English, and we do not ex-
plore the applicability of our method to other lan-
guages, e.g., morphologically rich or typologically
diverse languages. Since reasoning pattern and
confidence calibration can vary significantly across
languages due to linguistic structure and pretrain-
ing data distribution, it remains unexplored whether
our findings generalize beyond English.
Prompting. We evaluate our method in a zero-
shot setting using the default system prompt, i.e.,
“Be a helpful assistant.”. However, more advanced
prompting strategies, such as few-shot prompt-
ing or task-specific system prompts (Brown et al.,
2020), may further improve performance.

Human evaluation. In this paper, we do not con-
duct human evaluation to assess the quality or faith-
fulness of the generated outputs, leaving open the
question of alignment with human judgment.
Experiments on larger-scale models. Our exper-
iments only consider large language models with
up to 7.5B or 8B parameters due to the limited
computational budgets. The generalizability of our
method to larger models (e.g., 70B) remains unex-
plored and is left for future work.
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A Related works

Confidence measures for LLLMs. Large language
models (LLMs) often generate incorrect outputs
due to hallucinations, which highlights the im-
portance of estimating confidence in their out-
puts. To this end, several methods have been
proposed, including self-consistency (Wang et al.,
2023), semantic entropy over semantically equiv-
alent sequences (Kuhn et al.), the probability of
truth P(True) (Kadavath et al., 2022), or asking the
model to express its confidence in linguistic form
(Tian et al., 2023). In addition, Lin et al. (2024) pro-
pose computing confidence using the likelihoods
of important tokens that determine the semantics
of the sequence. Although such confidence mea-
sures have mainly been applied to single-statement
factuality checks, recent studies have shown that
measures based on P(True) can be utilized to esti-
mate the confidence in the reasoning path (Becker
and Soatto, 2024; Taubenfeld et al., 2025).
Inference-time scaling methods for LLMs.
Inference-time scaling methods improve the quality
of LLM outputs by self-assessing multiple gener-
ated outputs. Among them, the self-consistency-
based method (Wang et al., 2023) selects the most
frequent answer obtained through majority voting.
Other approaches include tree-of-thoughts (Yao
et al., 2023), which expands the search space over
intermediate steps, and self-refinement inference
(Madaan et al., 2023b), which iteratively refines
outputs using the LLM itself. In addition, Tauben-
feld et al. (2025); Wan et al. (2025) recently pro-
posed incorporating confidence scores on reasoning
paths into the self-consistency method and showed
notable performance improvements.

Training of reasoning for LLMs. To enhance rea-
soning abilities, LLMs are initially fine-tuned using
various supervision signals. A straightforward ap-
proach is supervised fine-tuning on high-quality
reasoning datasets (Cobbe et al., 2021; Trung et al.,
2024), or direct preference optimization on rea-
soning datasets annotated with human preferences
(Meta Al, 2024). While effective, collecting such
datasets is costly. As an alternative approach, sev-
eral studies instead consider reinforcement learn-
ing methods that rely solely on ground-truth an-
swers, using answer-level accuracy as the reward
signal (Zelikman et al., 2022; Trung et al., 2024;
DeepSeek-Al, 2025). In addition, several studies
propose training process reward models (PRMs)
that assess the quality of intermediate reasoning
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steps. Lightman et al. (2024) and Jiao et al. (2024)
train PRMs using human-annotated preferences on
individual reasoning steps and answer-level ground-
truth labels, respectively.

Other self-training approaches for LLMs. We
further describe self-training methods derived from
inference-time scaling techniques that are not based
on confidence. First, Kumar et al. (2024) propose
using linguistic assessments of output quality, e.g.,
assigning high scores to outputs that exhibit expert-
level knowledge, as reward signals for fine-tuning
LLMs. Next, Ranaldi and Freitas (2024) propose
using outputs obtained from self-refinement infer-
ence (Madaan et al., 2023b), as these outputs typi-
cally exhibit higher quality than the initial outputs.
Lastly, Zhang et al. (2024c) leverage preference
signals over intermediate reasoning steps derived
from tree-of-thoughts inference (Yao et al., 2023).
A concurrent line of work, Absolute Zero (Zhao
et al., 2025) shows that LLMs can improve their
reasoning abilities by self-generating and solving
code-based tasks, without relying on external data
or human supervision.

B Experimental details

We use all datasets and models in accordance with
their intended use for academic research, following
their respective licenses.

B.1 Observational experiment

For the observational experiment, we use questions
from the GPQA-main dataset (Rein et al., 2023).
For each question, we generate an output consist-
ing of a reasoning path and a final answer using
Llama3.1-8B-Instruct (Meta Al, 2024). To be spe-
cific, to obtain reasoning paths with high answer-
level or reasoning-level confidence, we generate
16 outputs per question and select the one with
the highest confidence score. As a result, we ob-
tain a triplet (question, reasoning path with high
answer-level confidence, reasoning path with high
reasoning-level confidence) for each question in
the GPQA-main dataset. We then evaluate the
correctness of each reasoning path using an ex-
ternal tool: 04-mini-2025-04-16. Before evalu-
ating the correctness of each reasoning path using
04-mini-2025-04-16, we first consider the rea-
soning to be incorrect if the answer is incorrect.



B.2 Prompts

Prompt for solving ARC-Challenge and GPQA.
We use the following prompt to solve the given
multiple-choice question [question].

-
Answer the following question using **reasoning** before
providing a final answer. Provide a precise, structured, and
well-reasoned response.

**Question:** [question]

#i## Response Format
**Understanding the question:** <identify key details>
**Reasoning:** <perform chain-of-thought>

**Final answer:** “The answer is <choose the most
promising single answer from [I] / [II] / [III] / [IV]> which is
<copy the content>"

Ensure correctness and clarity. Return a concise and
definitive response to the question. DO NOT RETURN
TWO OR MORE ANSWERS. STRICTLY FOLLOW THE
RESPONSE FORMAT.

Prompt for solving GSM8K and MATH. We use
the following prompt to solve the given numeric-
response question [question].

-
Answer the following question using **reasoning** before
providing a final answer. Provide a precise, structured, and
well-reasoned response.

**Question:** [question]

### Response Format

**Understanding the question:** <identify key details>
**Reasoning: ** <perform chain-of-thought>

**Final answer:** “The answer is $<value>$”

Ensure correctness and clarity. Return a concise and

definitive response to the question. STRICTLY FOLLOW
THE RESPONSE FORMAT.
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Prompts for solving questions in Game of 24.
We use the following prompt to complete the ex-
pression given the four digit numbers [four digits].

Answer the following question using **reasoning** before
providing a final answer. Provide a precise, structured, and
well-reasoned response.

**Question:** "Write an equation using basic arithmetic
operations (+ - * /) to obtain $24$ from the four given
numbers, e.g., “(4 + 8) * (6 - 4) = 24” from the input [4, 4, 6,
8]. You must use all the given numbers exactly once, i.e.,
simply rearrange them. Do not use any additional numbers.
Parentheses can be used to control the order of operations.
Now, write an expression using exactly the given numbers
[four digits] that results in $24$.

### Response Format

**Understanding the question:** <identify key details>
**Reasoning:** <perform chain-of-thought>

**Final answer:** “The answer is $<value>$”

Ensure correctness and clarity. Return a concise and
definitive response to the question. THE LHS
EXPRESSION MUST USE THE FOUR GIVEN
NUMBERS EXACTLY ONCE. DO NOT SIMPLIFY THE

FINAL EQUATION. STRICTLY FOLLOW THE
RESPONSE FORMAT.

Prompt for solving Crux
prompt to predict the output given the code [code]
and the input [input].

out, We use the following

You are given a Python function and an assertion containing
an input to the function. Complete the assertion with a literal
(no unsimplified expressions, no function calls) containing
the output when executing the provided code on the given
input, even if the function is incorrect or incomplete.
Execute the program step by step as **reasoning** before
providing a final answer. Provide a precise, structured, and
well-reasoned response.

*#*Code:** [code]

### Response Format

**Reasoning:** <perform chain-of-thought (step-by-step
execution)>

nn

**Final answer:** assert f([input]) == <output>

Ensure correctness and clarity. Return a concise and
definitive response to the question. STRICTLY FOLLOW
THE RESPONSE FORMAT.




Prompt for confidence estimation. We use the
following prompts to estimate the confidence score
on reasoning path [reasoning] and answer [answer].
As we obtain multiple reasoning paths in inference-
time scaling, we also augment additional reasoning
paths [example ¢] for ¢ = 1,..., M in estimating
the confidence score on the reasoning path [reason-
ing], where M = 4.

Measuring monolithic Cy(r|x)

Answer whether the **selected reasoning™* is correct for
the given **question**. Additionally, we provide randomly
generated reasoning before presenting the selected
reasoning.

**Question:** [question]

**Randomly generated reasoning 1 (this may be either
correct or incorrect):** [example 1]

**Randomly generated reasoning M (this may be either
correct or incorrect): ** [example M ]

**Selected reasoning:** [reasoning]

Is the **selected reasoning** correct?
A) True
B) False

The **selected reasoning** is: [A / B, depending on
whether the **selected reasoning** is correct given the
**question®*]

Measuring statement-wise Cy(7g|2, 71, .- ., Tk—1)

Answer whether the **new reasoning statement™* is correct
for the given **previous reasoning statements** and the
**question™*.

**Question:** [question]

**Previous reasoning statements:**
[step-1]

[step-(k — 1))

*#*New reasoning statement:** [step-k]

Is the **new reasoning statement** correct?
A) True
B) False

The **new reasoning statement™* is: [A / B, depending on
whether the **new reasoning statement™* is correct given
the **previous reasoning statements** and the
**question®*]

14

Measuring Cy(a|r, )

Answer whether the **selected answer** is correct for the
given **question**, based on the provided **reasoning**.

**Question:** [question]
**Reasoning:** [reasoning]
**Selected answer:** [answer]

Is the **selected answer** correct?
A) True
B) False

The **selected answer** is: [A / B, depending on whether
the **selected answer** is correct given the **question**
and the **reasoning**]

Evaluating reasoning correctness. We use the
following prompt to evaluate the reasoning [reason-
ing] given the question [question].

Given a question, answer whether the reasoning could be
correct.

Respond ONLY in JSON format:
{

"verdict":

}

correct" or "incorrect"

**Question:** [question]

**Reasoning:** [reasoning]

B.3 Data statistics

We provide detailed data statistics for the datasets
used in training and evaluation. The training and
test splits of GSM8k dataset (Cobbe et al., 2021)
contain 7.4k and 1.3k questions, respectively. The
ARC-Challenge dataset (Clark et al., 2018) in-
cludes training, validation, and test splits, contain-
ing 1.1k, 0.3k, and 1.1k questions, respectively.
For the GPQA dataset (Rein et al., 2023) (involv-
ing 0.4k and 0.5k questions in main and extended
splits), we use questions with lengths below 1, 280,
where the resulting main and extended splits in-
clude 420 and 509 questions, respectively. The
MATH dataset (Hendrycks et al., 2021) contains
7.5k training questions and 0.7k Level-5 test ques-
tions. The CRUXEval (Guo et al., 2024) and Game
of 24 dataset (Lile, 2025) contain 0.8k and 1.3k
questions, respectively.”

We further clarify that GSM8K, MATH, 24-Game, and
CruxEval are released under open-source licenses (Apache

2.0 or MIT). GPQA and ARC-Challenge are distributed under
the CC-BY-4.0 license.



B.4 Implementations

We use four NVIDIA A100 SXM4 80GB GPUs.
We save checkpoints every 200 steps and select
the model with the highest accuracy on the ARC-
Challenge validation split. Training the selected
model typically takes two to four days. We apply
hyper-parameter searching for learning rate over
{1e-6, 5e-6}. We also apply a low rank adaptation
(Hu et al., 2022) with rank 128 and o = 256. At
each gradient step, gradient clipping with a max-
imum norm of 1.0 is applied. We report results
from a single run.

¢ For CORE-PO (ours), which uses online DPO,
we generate N = 5 outputs for each question in
the training set. We construct preference pairs of
outputs by evaluating their confidence measures,
as described in Section 3.2. The detailed prompts
are provided in Appendix B.2.

¢ For SR-PO (Kumar et al., 2024) which uses of-
fline DPO, we generate N = 5 outputs for each
question in the training set. Then, we construct
preference pairs by evaluating their scores us-
ing original self-rewarding prompts of SR-PO.
In addition, we consider multiple iterations pro-
posed in this method (Kumar et al., 2024), where
each iteration involves an update of the reference
model in DPO. We conduct two iterations in our
experimental setup, where the LLM achieving
the highest validation accuracy is selected.

¢ For SC-PO (Prasad et al., 2024) which uses of-
fline DPO. This method samples a larger number
of outputs (N = 8) for each question, since
preference pairs are constructed only when the
majority voting scores over answers differ by
at least 3 (Prasad et al., 2024). A smaller num-
ber of outputs (/N = 5) often fails to construct
preference pairs under this criterion. In addition,
we consider multiple iterations proposed in this
method (Prasad et al., 2024), where each itera-
tion involves an update of the reference model
in DPO. We conduct two iterations in our ex-
perimental setup, where the LLM achieving the
highest validation accuracy is selected.

We further clarify that our implementations are
based on the transformers library (Wolf et al.,
2020), the trl library (von Werra et al., 2020), and
the accelerate library (Gugger et al., 2022).'°

"We use Qwen2.5-7B (Apache 2.0) and LLaMA 3.1-8B
(LLaMA 3.1 Community License), both of which allow use
and redistribution under their respective terms.
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C Use of AI assistants

We used Al-based writing assistants to improve the
grammar. These tools were used only for edito-
rial improvements. The technical content, method-
ology, and experimental results were entirely au-
thored by the researchers.
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